Stability of geosynthetic reinforced embankments over stone column-improved soft soil
Abstract
The stability of embankments on soft soils is a common problem; the reinforcement of this type of soil by a geosynthetic sheet above stone columns is a recent technique, for an excellent distribution of the vertical stresses on the stone columns and the soft soils. This paper focuses on the numerical analysis of a geosynthetic-reinforced embankment over stone column-improved soft soil. The finite difference code Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) was used to determine the optimal placement of the geosynthetic sheet. The embankment fill, the subsoil, and the stone columns were modeled by an elasto-plastic model with a Mohr-Coulomb yield criterion and associated flow rule. In this study, several geometrical and mechanical parameters have been considered, such as the stiffness modulus, the placement of geosynthetic sheet, and the internal friction angle of the embankment fill. The factor of safety obtained by 3D numerical method was compared with those obtained by 2D numerical methods. The results of this study show the effect of the placement and stiffness of the geosynthetic sheet on the factor of safety.References
Abusharar, S.W. & J. Han (2011) Two-dimensional deep-seated slope stability analysis of embankments over stone column-improved soft clay. Engineering Geology 120(1): 103-110.
Afshar, J. N. & M. Ghazavi (2014) Experimental Studies on Bearing Capacity of Geosynthetic Reinforced Stone Columns. Arabian Journal for Science and Engineering 39(3): 1559-1571.
Balaam, N. P. & J. R. Booker (1985) Effect of stone column yield on settlement of rigid foundations in stabilized clay. International journal for numerical and analytical methods in geomechanics 9(4): 331-351.
Bishop, A. W. (1955) The use of the slip circle in the stability analysis of slopes. Geotechnique 5(1): 7-17.
Borges, J. L., T. S. Domingues & A. S. Cardoso (2009) Embankments on soft soil reinforced with stone columns: numerical analysis and proposal of a new design method. Geotechnical and Geological Engineering, 27(6): 667-679.
Bouassida, M., P. De Buhan & L. Dormieux (1995) Bearing capacity of a foundation resting on a soil reinforced by a group of columns. Géotechnique 45(1): 25-34.
Chen, J. F., L. Y. Li, J. F. Xue & S. Z. Feng (2015) Failure mechanism of geosynthetic-encased stone columns in soft soils under embankment.Geotextiles and Geomembranes 43(5): 424-431.
Cheng, Y. M., T. Lansivaara & W. B. Wei (2007) Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and Geotechnics 34(3): 137-150.
Choobbasti, A. J., A. Zahmatkesh & R. Noorzad (2011) Performance of stone columns in soft clay: numerical evaluation. Geotechnical and Geological Engineering 29(5): 675-684.
Cooper, M. R. & A. N. Rose (1999) Stone column support for an embankment on deep alluvial soils. Proceedings of the institution of civil engineers-geotechnical engineering 137(1): 15-25.
Dawson, E. M., W. H. Roth & A. Drescher (1999) Slope stability analysis by strength reduction. Geotechnique 49(6): 835-840.
De Buhan, P., & J.Salençon (1987) Analyse de la stabilité des ouvrages en sols renforcés par une méthode d'homogénéisation. REV FR GEOTECH, (41).
Deb, K., A. Dhar & P. Bhagat (2012) Evolutionary approach for optimal stability analysis of geosynthetic-reinforced stone column-supported embankments on clay. KSCE Journal of Civil Engineering 16(7): 1185-1192.
Dhouib, A. & F. Blondeau (2005) Colonnes ballastées : techniques de mise en œuvre, domaines d'application, comportement, justification, contrôle, axes de recherche et développement. Presses de l'École nationale des ponts et chaussées.
Dhouib, A., B.Soyez & I. Shahrour (1993) Réflexion sur les problèmes de calcul et de dimensionnement des colonnes ballastées sous chargement monotone. Actes du Congrès Franco-Polonais de Mécanique des sols. Douai: 305-312.
Dimaggio, J. A. (1978) Stone columns for highway construction. Technical Report No. FHWA-DP-46-1, US Department of Transport, Federal Highway Administration.
Fellenius, W. (1936) Calculation of the stability of earth dams. InTransactions of the 2nd congress on large dams, Washington, DC (Vol. 4, pp. 445-463). International Commission on Large Dams (ICOLD) Paris.
Giannaros, C. & G. Tsiambaos (1997) Stabilization of embankment foundations by using stone columns. Geotechnical & Geological Engineering 15(3): 247-258.
Gniel, J. & A. Bouazza (2009) Improvement of soft soils using geogrid encased stone columns. Geotextiles and Geomembranes 27(3): 167-175.
Griffiths, D. V. & P. A. Lane (1999) Slope stability analysis by finite elements. Geotechnique 49(3): 387-403.
Han, J., J. Huang & A. Porbaha (2005) 2D numerical modeling of a constructed geosynthetic-reinforced embankment over deep mixed columns. In Contemporary Issues in Foundation Engineering (pp. 1-11). ASCE.
Han, J., S. Oztoprak, R. L. Parsons & J. Huang (2007) Numerical analysis of foundation columns to support widening of embankments. Computers and Geotechnics, 34(6): 435-448.
Han, J. & S. L. Ye (2001) Simplified method for consolidation rate of stone column reinforced foundations. Journal of Geotechnical and Geoenvironmental Engineering 127(7): 597-603.
Hu, Y., G. Zhang, J. M. Zhang & C. F. Lee (2010) Centrifuge modeling of geotextile-reinforced cohesive slopes. Geotextiles and geomembranes 28(1): 12-22.
Hughes, J. M. O. & N. J. Withers (1974) Reinforcing of soft cohesive soils with stone columns. Ground Engineering 7(3).
FLAC3D- Fast Lagrangian Analysis of Continua in three dimensions, version 3.10. (2006) ITASCA Consulting Group, Inc., Minneapolis.
Liu, S. Y., L. T. Shao & H. J. Li (2015) Slope stability analysis using the limit equilibrium method and two finite element methods. Computers and Geotechnics 63: 291-298.
Luo, N., R. J. Bathurst & S. Javankhoshdel (2016) Probabilistic stability analysis of simple reinforced slopes by finite element method. Computers and Geotechnics 77: 45-55.
Lyamin, A. V. & S. W. Sloan (2002) Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics 26(2): 181-216.
Kupka, M., I. Herle & M. Arnold (2009) Advanced calculations of safety factors for slope stability. International Journal of Geotechnical Engineering 3(4): 509-515.
Madhav, M. R. & P. P. Vitkar (1978) Strip footing on weak clay stabilized with a granular trench or pile. Canadian Geotechnical Journal 15(4): 605-609.
Madhyannapu, R. S., A. J. Puppala, S. Hossain, J. Han & A. Porbaha (2006) Analysis of geotextile reinforced embankment over deep mixed soil columns: using numerical and analytical tools. Proceedings of the ASCE GeoCongress. USA, pp. 1-6.
Mohanty, P. & M. Samanta (2015) Experimental and Numerical Studies on Response of the Stone Column in Layered Soil. International Journal of Geosynthetics and Ground Engineering 1(3):1-14.
Palmeira, E. M., J. H. Pereira & A. R. da Silva (1998) Backanalyses of geosynthetic reinforced embankments on soft soils. Geotextiles and Geomembranes 16(5): 273-292.
Petterson, K. E. (1955) The early history of circular sliding surfaces.Geotechnique 5(4): 275-296.
Priebe, H. (1976) Abschätzung des Setzungsverhaltens eines durch Stopfverdichtung verbesserten Baugrundes. Die Bautechnik 53(5): 160-162.
Pruchnicki, E., & I. Shahrour (1991) Application de la theorie de l'homogeneisation aux colonnes ballastees. Inannales de l'institut technique du batiment et des travaux publics (no. 496 (sf213)).
Qhaderi, R., M. Vafaeian & H. Hashemolhoseini (2005) A parametric study of the behavior of geosynthetic reinforced soil slopes. International Journal of Engineering-Materials And Energy Research Center-18(4): 371-389.
Rowe, R. K., & K. L. Soderman (1985) An approximate method for estimating the stability of geotextile-reinforced embankments. Canadian Geotechnical Journal, 22(3): 392-398.
Shukla, S. K. (2002) Geosynthetics and their applications. Thomas Telford.
Tan, S. A., S. Tjahyono & K. K. Oo (2008) Simplified plane-strain modeling of stone-column reinforced ground. Journal of Geotechnical and Geoenvironmental Engineering 134(2): 185-194.
Terashi, M., M. Kitazume & S. Minagawa (1991) Bearing capacity of improved ground by compaction piles. ASTM Special Technical Publication 1089: 47-61.
Tschuchnigg, F., H. F. Schweiger & S. W. Sloan (2015) Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part II: Back analyses of a case history. Computers and Geotechnics, 70:178-189.
Van Impe, W., E. De Beer (1983) Improvement of settlement behaviour of soft layers by means of stone columns. In Proceedings, 8th European Conference on Soil Mechanics and Foundation Engineering: Improvement of Ground (Vol. 1, pp. 309-312).
Viswanadham, B. V. S. & R. R. Mahajan (2007) Centrifuge model tests on geotextile-reinforced slopes. Geosynthetics International 14(6): 365-379.
Wulandari, P. S. & D. Tjandra (2006) Determination of optimum tensile strength of geogrid reinforced embankment. In International Civil Engineering Conference towards Sustainable Civil Engineering Practice, pp. 187-194.
Zhang, Z., J. Han & G. Ye (2014) Numerical investigation on factors for deep-seated slope stability of stone column-supported embankments over soft clay. Engineering Geology 168: 104-113.
Zornberg, J. G., & F. Arriaga (2003) Strain distribution within geosynthetic-reinforced slopes. Journal of Geotechnical and Geoenvironmental Engineering, 129(1) : 32-45.
Afshar, J. N. & M. Ghazavi (2014) Experimental Studies on Bearing Capacity of Geosynthetic Reinforced Stone Columns. Arabian Journal for Science and Engineering 39(3): 1559-1571.
Balaam, N. P. & J. R. Booker (1985) Effect of stone column yield on settlement of rigid foundations in stabilized clay. International journal for numerical and analytical methods in geomechanics 9(4): 331-351.
Bishop, A. W. (1955) The use of the slip circle in the stability analysis of slopes. Geotechnique 5(1): 7-17.
Borges, J. L., T. S. Domingues & A. S. Cardoso (2009) Embankments on soft soil reinforced with stone columns: numerical analysis and proposal of a new design method. Geotechnical and Geological Engineering, 27(6): 667-679.
Bouassida, M., P. De Buhan & L. Dormieux (1995) Bearing capacity of a foundation resting on a soil reinforced by a group of columns. Géotechnique 45(1): 25-34.
Chen, J. F., L. Y. Li, J. F. Xue & S. Z. Feng (2015) Failure mechanism of geosynthetic-encased stone columns in soft soils under embankment.Geotextiles and Geomembranes 43(5): 424-431.
Cheng, Y. M., T. Lansivaara & W. B. Wei (2007) Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and Geotechnics 34(3): 137-150.
Choobbasti, A. J., A. Zahmatkesh & R. Noorzad (2011) Performance of stone columns in soft clay: numerical evaluation. Geotechnical and Geological Engineering 29(5): 675-684.
Cooper, M. R. & A. N. Rose (1999) Stone column support for an embankment on deep alluvial soils. Proceedings of the institution of civil engineers-geotechnical engineering 137(1): 15-25.
Dawson, E. M., W. H. Roth & A. Drescher (1999) Slope stability analysis by strength reduction. Geotechnique 49(6): 835-840.
De Buhan, P., & J.Salençon (1987) Analyse de la stabilité des ouvrages en sols renforcés par une méthode d'homogénéisation. REV FR GEOTECH, (41).
Deb, K., A. Dhar & P. Bhagat (2012) Evolutionary approach for optimal stability analysis of geosynthetic-reinforced stone column-supported embankments on clay. KSCE Journal of Civil Engineering 16(7): 1185-1192.
Dhouib, A. & F. Blondeau (2005) Colonnes ballastées : techniques de mise en œuvre, domaines d'application, comportement, justification, contrôle, axes de recherche et développement. Presses de l'École nationale des ponts et chaussées.
Dhouib, A., B.Soyez & I. Shahrour (1993) Réflexion sur les problèmes de calcul et de dimensionnement des colonnes ballastées sous chargement monotone. Actes du Congrès Franco-Polonais de Mécanique des sols. Douai: 305-312.
Dimaggio, J. A. (1978) Stone columns for highway construction. Technical Report No. FHWA-DP-46-1, US Department of Transport, Federal Highway Administration.
Fellenius, W. (1936) Calculation of the stability of earth dams. InTransactions of the 2nd congress on large dams, Washington, DC (Vol. 4, pp. 445-463). International Commission on Large Dams (ICOLD) Paris.
Giannaros, C. & G. Tsiambaos (1997) Stabilization of embankment foundations by using stone columns. Geotechnical & Geological Engineering 15(3): 247-258.
Gniel, J. & A. Bouazza (2009) Improvement of soft soils using geogrid encased stone columns. Geotextiles and Geomembranes 27(3): 167-175.
Griffiths, D. V. & P. A. Lane (1999) Slope stability analysis by finite elements. Geotechnique 49(3): 387-403.
Han, J., J. Huang & A. Porbaha (2005) 2D numerical modeling of a constructed geosynthetic-reinforced embankment over deep mixed columns. In Contemporary Issues in Foundation Engineering (pp. 1-11). ASCE.
Han, J., S. Oztoprak, R. L. Parsons & J. Huang (2007) Numerical analysis of foundation columns to support widening of embankments. Computers and Geotechnics, 34(6): 435-448.
Han, J. & S. L. Ye (2001) Simplified method for consolidation rate of stone column reinforced foundations. Journal of Geotechnical and Geoenvironmental Engineering 127(7): 597-603.
Hu, Y., G. Zhang, J. M. Zhang & C. F. Lee (2010) Centrifuge modeling of geotextile-reinforced cohesive slopes. Geotextiles and geomembranes 28(1): 12-22.
Hughes, J. M. O. & N. J. Withers (1974) Reinforcing of soft cohesive soils with stone columns. Ground Engineering 7(3).
FLAC3D- Fast Lagrangian Analysis of Continua in three dimensions, version 3.10. (2006) ITASCA Consulting Group, Inc., Minneapolis.
Liu, S. Y., L. T. Shao & H. J. Li (2015) Slope stability analysis using the limit equilibrium method and two finite element methods. Computers and Geotechnics 63: 291-298.
Luo, N., R. J. Bathurst & S. Javankhoshdel (2016) Probabilistic stability analysis of simple reinforced slopes by finite element method. Computers and Geotechnics 77: 45-55.
Lyamin, A. V. & S. W. Sloan (2002) Upper bound limit analysis using linear finite elements and non-linear programming. International Journal for Numerical and Analytical Methods in Geomechanics 26(2): 181-216.
Kupka, M., I. Herle & M. Arnold (2009) Advanced calculations of safety factors for slope stability. International Journal of Geotechnical Engineering 3(4): 509-515.
Madhav, M. R. & P. P. Vitkar (1978) Strip footing on weak clay stabilized with a granular trench or pile. Canadian Geotechnical Journal 15(4): 605-609.
Madhyannapu, R. S., A. J. Puppala, S. Hossain, J. Han & A. Porbaha (2006) Analysis of geotextile reinforced embankment over deep mixed soil columns: using numerical and analytical tools. Proceedings of the ASCE GeoCongress. USA, pp. 1-6.
Mohanty, P. & M. Samanta (2015) Experimental and Numerical Studies on Response of the Stone Column in Layered Soil. International Journal of Geosynthetics and Ground Engineering 1(3):1-14.
Palmeira, E. M., J. H. Pereira & A. R. da Silva (1998) Backanalyses of geosynthetic reinforced embankments on soft soils. Geotextiles and Geomembranes 16(5): 273-292.
Petterson, K. E. (1955) The early history of circular sliding surfaces.Geotechnique 5(4): 275-296.
Priebe, H. (1976) Abschätzung des Setzungsverhaltens eines durch Stopfverdichtung verbesserten Baugrundes. Die Bautechnik 53(5): 160-162.
Pruchnicki, E., & I. Shahrour (1991) Application de la theorie de l'homogeneisation aux colonnes ballastees. Inannales de l'institut technique du batiment et des travaux publics (no. 496 (sf213)).
Qhaderi, R., M. Vafaeian & H. Hashemolhoseini (2005) A parametric study of the behavior of geosynthetic reinforced soil slopes. International Journal of Engineering-Materials And Energy Research Center-18(4): 371-389.
Rowe, R. K., & K. L. Soderman (1985) An approximate method for estimating the stability of geotextile-reinforced embankments. Canadian Geotechnical Journal, 22(3): 392-398.
Shukla, S. K. (2002) Geosynthetics and their applications. Thomas Telford.
Tan, S. A., S. Tjahyono & K. K. Oo (2008) Simplified plane-strain modeling of stone-column reinforced ground. Journal of Geotechnical and Geoenvironmental Engineering 134(2): 185-194.
Terashi, M., M. Kitazume & S. Minagawa (1991) Bearing capacity of improved ground by compaction piles. ASTM Special Technical Publication 1089: 47-61.
Tschuchnigg, F., H. F. Schweiger & S. W. Sloan (2015) Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part II: Back analyses of a case history. Computers and Geotechnics, 70:178-189.
Van Impe, W., E. De Beer (1983) Improvement of settlement behaviour of soft layers by means of stone columns. In Proceedings, 8th European Conference on Soil Mechanics and Foundation Engineering: Improvement of Ground (Vol. 1, pp. 309-312).
Viswanadham, B. V. S. & R. R. Mahajan (2007) Centrifuge model tests on geotextile-reinforced slopes. Geosynthetics International 14(6): 365-379.
Wulandari, P. S. & D. Tjandra (2006) Determination of optimum tensile strength of geogrid reinforced embankment. In International Civil Engineering Conference towards Sustainable Civil Engineering Practice, pp. 187-194.
Zhang, Z., J. Han & G. Ye (2014) Numerical investigation on factors for deep-seated slope stability of stone column-supported embankments over soft clay. Engineering Geology 168: 104-113.
Zornberg, J. G., & F. Arriaga (2003) Strain distribution within geosynthetic-reinforced slopes. Journal of Geotechnical and Geoenvironmental Engineering, 129(1) : 32-45.
Published
2016-10-27
How to Cite
LABED, Mohamed; MELLAS, Mekki.
Stability of geosynthetic reinforced embankments over stone column-improved soft soil.
Journal of Applied Engineering Science & Technology, [S.l.], v. 2, n. 2, p. 65-74, oct. 2016.
ISSN 2571-9815.
Available at: <https://revues.univ-biskra.dz./index.php/jaest/article/view/1818>. Date accessed: 21 nov. 2024.
Issue
Section
Section C: Geotechnical and Civil Engineering
Keywords
Geosynthetic; Stone column; Finite difference; Stability; Factor of safety; Embankment
J. Appl. Eng. Sci. Technol. (JAEST - ISSN 2352-9873) is a peer-reviewed quarterly journal dedicated to the applied engineering sciences and technology. The JAEST provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
There is no submission or publication fee for papers published in the JAEST.
Authors who publish in the JAEST agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in the JAEST.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in the JAEST.
- Authors are permitted to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). Any such posting made before acceptance and publication of the Work shall be updated upon publication to include a reference to the JAEST and a link to the online abstract for the final published Work in the Journal.