Studying a Hidden Bifurcation and Finding Hopf Bifurcation with Generated New Saturated Function Series
Résumé
In this article, a hidden bifurcation of the multispiral chaotic attractor generated by the new saturated function series has been considered. The general shape of the chaotic attractors is described in terms of the number of spirals (also reffered to as multiscroll attractor) governed by integer parameters p and q. Due to the integer nature of the parameter, it is not possible to observe bifurcations from M spirals when the parameter is increased by two. However, by using the method of hidden bifurcations, an additional real parameter ε was introduced to observe such bifurcations. Additionally, this added parameter allowed us to find the Hopf bifurcation of the multispiral attractor generated by the new saturated function series transitioning from a stable state to a chaotic state. Furthermore, the Routh-Hurwitz criterion was used to study the stability of the original equilibrium point of the system.
Keywords: Saturated function series, hidden bifurcation, Hopf bifurcation, multiscroll.
MSC: 39A21, 39A28, 39A33.
REFERENCES
[1] Lin, H., Wang, C., Xu, C., Zhang, X., & Iu, H. H. (2022). A memristive synapse control method to generate diversified multistructure chaotic attractors. IEEE transactions on computer-aided design of integrated circuits and systems, 42(3), 942-955.. Search in Google Scholar. Digital Object Identifier
[2] Wang, N., Cui, M., Yu, X., Shan, Y., & Xu, Q. (2023). Generating multi-folded hidden Chua’s attractors: Two-case study. Chaos, Solitons & Fractals, 177, 114242. Search in Google Scholar. Digital Object Identifier
[3] Wang, N., Zhang, G., Kuznetsov, N. V., & Li, H. (2022). Generating grid chaotic sea from system without equilibrium point. Communications in Nonlinear Science and Numerical Simulation, 107, 106194.. Search in Google Scholar. Digital Object Identifier
[4] Wang, N., Xu, D., Li, Z., & Xu, Q. (2023). A general configuration for nonlinear circuit employing current-controlled nonlinearity: Application in Chua’s circuit. Chaos, Solitons & Fractals, 177, 114233. Search in Google Scholar. Digital Object Identifier
[5] Kuznetsov. Y.A (1998), Elements of Applied Bifurcation Theory. Springer, New York. view book
[6] Deng, Q., & Wang, C. (2019). Multi-scroll hidden attractors with two stable equilibrium points. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(9). Search in Google Scholar. https://doi.org/10.1063/1.5116732.
[7] Vandewalle. J and Vandenberghe. L(1995)., Piecewise-linear circuits and piecewise-linear analysis, in The Circuits and Filters Handbook, W. K. Chen, Ed. Boca Raton, FL: CRC, pp. 1034-1057. View a book
[8] Leonov, G. A., Vagaitsev, V. I., & Kuznetsov, N. V. (2010, August). Algorithm for localizing Chua attractors based on the harmonic linearization method. In Doklady Mathematics (Vol. 82, No. 1, pp. 663-666). Pleiades Publishing, Ltd.(Плеадес Паблишинг, Лтд). Search in Google Scholar. View Papar
[9] Lin, H., Wang, C., Sun, Y., & Wang, T. (2022). Generating n-scroll chaotic attractors from a memristor-based magnetized hopfield neural network. IEEE Transactions on Circuits and Systems II: Express Briefs, 70(1), 311-315. Search in Google Scholar . https://doi.org/10.1109/TCSII.2022.3212394.
[10] Menacer, T., Lozi, R., & Chua, L. O. (2016). Hidden bifurcations in the multispiral Chua attractor. International Journal of Bifurcation and Chaos, 26(14), 1630039. Search in Google Scholar. https://doi.org/10.1142/S0218127416300391
[11] Leonov. G.A (2010)., Effective methods for periodic oscillations search in dynamical systems, Appl. Math Mech, vol. 74, pp.37-73
[12] Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N. V., Leonov, G. A., & Prasad, A. (2016). Hidden attractors in dynamical systems. Physics Reports, 637, 1-50. Search in Google Scholar. https://doi.org/10.1016/j.physrep.2016.05.002
[13] Leonov, G. A., Kuznetsov, N. V., & Vagaitsev, V. I. (2011). Localization of hidden Chuaʼs attractors. Physics Letters A, 375(23), 2230-2233. Search in Google Scholar . https://doi.org/10.1016/j.physleta.2011.04.037
[14] Leonov, G. A., & Kuznetsov, N. V. (2011). Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems. IFAC Proceedings Volumes, 44(1), 2494-2505. Search in Google Scholar. https://doi.org/10.3182/20110828-6-IT-1002.03315
[15] Leonov, G. A., & Kuznetsov, N. V. (2013). Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. International Journal of Bifurcation and Chaos, 23(01), 1330002. Search in Google Scholar. https://doi.org/10.1142/S0218127413300024
[16] Lu, J., Chen, G., Yu, X., & Leung, H. (2004). Design and analysis of multiscroll chaotic attractors from saturated function series. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(12), 2476-2490. Search in Google Scholar. https://doi.org/10.1109/TCSI.2004.838151
[17] Ahmed, E., El-Sayed, A. M. A., & El-Saka, H. A. (2006). On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems. Physics Letters A, 358(1), 1-4. Search in Google Scholar. https://doi.org/10.1016/j.physleta.2006.04.087
[18] Zaamoune, F., Menacer, T., Lozi, R., & Chen, G. (2019). Symmetries in hidden bifurcation routes to multiscroll chaotic attractors generated by saturated function series. Journal of Advanced Engineering and Computation, 3(4), 511-522. Search in Google Scholar. https://dx.doi.org/10.25073/jaec.201934.256
[19] Faiza, Z., & Tidjani, M. (2022). Hidden modalities of spirals of chaotic attractor via saturated function series and numerical results. Analysis and Mathematical Physics, 12(5), 108. Search in Google Scholar. https://doi.org/10.1007/s13324-022-00717-2
[20] Faiza, Z., & Tidjani, M. (2023). The behavior of hidden bifurcation in 2D scroll via saturated function series controlled by a coefficient harmonic linearization method. Demonstratio Mathematica, 56(1), 20220211. Search in Google Scholar. https://doi.org/10.1515/dema-2022-0211
Communicated Editor: Khaled Zennir
Manuscript received Feb 20, 2024; revised Apr 17, 2024; accepted Mai 01, 2024; published Dec 07, 2024.