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A Log-Probability-Weighted-Moments type
estimator for the extreme value index in a

truncation scheme.
Souad Benchaira1, Saida Mancer2 and Abdelhakim Necir3

ABSTRACT: The limit theorems of asymptotic behavior of tail index estimators for right truncation Pareto-like data requires some

regularity assumptions either on tail indices (γ1 < γ2) or on the dependence structure condition between the truncation variable and

the interest one. In this paper, we introduce a new estimator for the tail index based on the Log-Probability-Weighted-Moments method

and, getting rid of aforementioned assumptions, we establish its consistency and asymptotic normality. We show, by simulation, that

the newly proposed estimator behaves well both in terms of bias and mean squared error.
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1 INTRODUCTION

Let (X∗i , Y
∗
i ) , i = 1, ..., N ≥ 1 be a sample from a couple (X∗, Y ∗) of independent positive random variables

(rv’s) defined over some probability space (Ω,A,P) , with continuous distribution functions (df’s) F ∗ and
G∗ respectively. Suppose that X∗ is right-truncated by Y ∗, in the sense that X∗i is only observed when
X∗i ≤ Y ∗i . Throughout the paper, we will use the notation S(x) := S(∞)−S(x), for any S. We assume that
both right-tail functions F

∗ and G
∗ are regularly varying at infinity with respective tail indices −1/γ1 and

−1/γ2, notation: F ∗ ∈ RV(−1/γ1) and G
∗ ∈ RV(−1/γ2). That is, for any s > 0

F
∗
(st)

F
∗
(t)

→ s−1/γ1 and
G
∗
(st)

G
∗
(t)

→ s−1/γ2 , as t → ∞. (1.1)

Let us now denote (Xi, Yi) , i = 1, ..., n, to be the observed data, as copies of a couple of rv’s (X,Y ) with
joint df T , corresponding to the truncated sample (X∗i , Y

∗
i ) , i = 1, ..., N, where n = nN is a sequence of

discrete rv’s. By the strong law of the large numbers, we have

nN/N → P (X∗ ≤ Y ∗) =

∫ ∞
0

G
∗
(z) dF ∗ (z) =: p, (1.2)
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as N → ∞, almost surely (a.s.), where p stands for the percentage of the observed data. This property
allows us to assume, without loss of generality, that for any subsequence an of n, we may drop ”a.s.” in
the strong limit an

.→ a ≤ ∞ as N → ∞. For x, y ≥ 0, we have

T (x, y) := p−1
∫ y

0

F ∗ (min (x, z)) dG∗ (z) ,

having (marginal) right-tails

F (x) = −p−1
∫ ∞
x

G
∗
(z) dF

∗
(z) and G (y) = −p−1

∫ ∞
y

F ∗ (z) dG
∗
(z) .

Note that F ∈ RV(−1/γ) and G ∈ RV(−1/γ2), where γ := γ1γ2/ (γ1 + γ2) (see, e.g., [7]). Motivated by an
application to real dataset of lifetimes of automobile brake pads ([13], page 69), recently [7] introduced an
estimator of γ1 defined by

γ̂1 (k1, k2) :=
γ̂2 (k2) γ̂ (k1)

γ̂2 (k2)− γ̂ (k1)
,

where k1 = k1 (n) and k2 = k2 (n) are two distinct sample fractions used, respectively, in Hill’s estimators
([10])

γ̂ (k1) :=
1

k1

k1∑
i=1

log
Xn−i+1:n

Xn−k1:n
and γ̂2 (k2) :=

1

k2

k2∑
i=1

log
Yn−i+1:n

Yn−k2:n
,

of tail indices γ and γ2, with X1:n ≤ ... ≤ Xn:n and Y1:n ≤ ... ≤ Yn:n being the order statistics pertaining to
the samples (X1, ..., Xn) and (Y1, ..., Yn) respectively. [2] considered a single sample fraction k = k1 = k2
satisfying 1 < k < n, k → ∞ and k/n → 0, as N → ∞, and defined the corresponding estimators of γ, γ2
and γ1 by

γ̂ :=
1

k

k

i=1
log

Xn−i+1:n

Xn−k:n
, γ̂2 :=

1

k

k

i=1
log

Yn−i+1:n

Yn−k:n
,

and

γ̂
(GS)
1 :=

1

k

k

i=1

k
j=1 log

Xn−i+1:n

Xn−k:n
log

Yn−j+1:n

Yn−k:n

k
i=1 log

Yn−i+1:nXn−k:n
Yn−k:nXn−i+1:n

.

Assuming regular variation conditions (1.1) and the tail dependence assumption (see, e.g., [16]) , they also
provided a Gaussian representation is terms of a two-parameter Wiener process which leads to asymptotic
normality of γ̂

(GS)
1 . More recently, [3] proposed a new estimation method based on the product-limit

estimator of underlying df F ∗, to derive the following estimator

γ̂
(BMN)
1 :=

(
k∑

i=1

F ∗n (Xn−i+1:n)

Cn (Xn−i+1:n)

)−1 k∑
i=1

F ∗n (Xn−i+1:n)

Cn (Xn−i+1:n)
log

Xn−i+1:n

Xn−k:n
,

where
F ∗n (x) :=

∏
i:Xi>x

exp

{
− 1

nCn (Xi)

}
,

is the so-called product-limit Woodroofe’s estimator [18] of df F ∗ and Cn (x) := n−1
n∑

i=1
I{Xi≤x≤Yi}, where

IA stands for the indicator function of set A. The authors also established the consistency and asymptotic
normality of their estimator but by considering only the case γ1 < γ2. More precisely

√
k
(
γ̂
(BMN)
1 − γ1

)
D→ N

(
µ, σ2

1

)
, as n → ∞,

where
σ2
1 := γ2 (1 + (γ1/γ2))

(
1 + (γ1/γ2)

2
)
/ (1− (γ1/γ2)) .
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The bias reduction of this estimator was addressed in [4], [3], [11] and more recently in [14]. For their part,
[19] proposed a similar estimator to γ̂

(BMN)
1 (with deterministic threshold) and established its asymptotic

normality by assuming condition γ1 < γ2 as well. Although this condition seems reasonable, it is better that
it is not imposed. In conclusion, as mentioned above, the asymptotic behavior of the already proposed
estimators was studied either by making restriction of tail indices or by assuming the tail dependence
condition between the truncation and truncated rv’s. To get rid of these assumptions, we propose an
alternative estimation method that we next give their details.

1.1 New estimator for the tail index γ1

We have already noticed that both two estimators of the tail index γ1, given by [3] and [19], are based on
the nonparametric product-limit estimators of the underlying df F ∗. Although , this approach provides
good estimators in terms of bias and the root mean squared error (rmse), their corresponding consistency
and asymptotic normality are valid only for Pareto-type models satisfying assumption γ1 < γ2. Then our
main goal is to define an estimator for γ1 that works for both γ1 < γ2 and γ1 ≥ γ2. To this end, we introduce
a new estimation method inspired by the log probability weighted moments (LPWM) estimation method,
for complete data, given recently by [5]. Let us define the following ratio of tail expectations

Lt (r, s) :=
E
[(
G (X)

)r
(log(X/t))s | X > t

]
E
[(
G (X)

)r | X > t
] , r, s ≥ 0, t > 0.

For suitable values of r and s with large t, the ratio Lt (r, s) serve us to estimate the tail indices (γ, β, γ2)
and also the second-order parameters (ρF , ρH , ρG) , given in (2.1) and (2.2) , which is out of scope of the
paper. Indeed, we showed in Proposition 6.1, that

Lt (r, s) →
(

γ1γ

(1 + r) γ1 − rγ

)s

Γ (s+ 1) , as t → ∞,

where Γ : z →
∫∞
0 xz−1e−xdx, z > 0, is the usual gamma function. In particular, we have

γt := Lt (0, 1) =

∫∞
t log (x/t) dF (x)

F (t)
→ γ, as t → ∞

and

βt := Lt (1, 1) =

∫∞
t G (x) log (x/t) dF (x)∫∞

t G (x) dF (x)
→ β, as t → ∞,

where
β :=

γ1γ

2γ1 − γ
=

γ1γ2
2γ1 + γ2

.

This mean that

H (x) :=

∫∞
x G (x) dF (x)∫∞
0 G (x) dF (x)

is regularly varying with at infinity with tail index −1/β. It is clear that the above β−formula, implies that

γ1 =
βγ

2β − γ
,

which will used to estimate γ1 by means of Hill’s estimators γ̂ and β̂ that will be defined below. To this
end, let us t = Xn−k:n and then replace, in βt above, both F and G by their respective empirical df’s

Fn (x) := n−1
n∑

i=1

I{Xi≤x} and Gn (y) := n−1
n∑

i=1

I{Yi≤y},

to get ∫∞
Xn−k:n

Gn (x) log (x/Xn−k:n) dFn (x)∫∞
Xn−k:n

Gn (x) dFn (x)
,
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which equals

β̂ :=

k∑
i=1

ci,n log (Xn−i+1:n/Xn−k:n) ,

where

ci,n :=
Gn (Xn−i+1:n)∑k
i=1Gn (Xn−i+1:n)

.

Finally, by using the above formula of γ1, we end up with a new estimator for γ1 as follows

γ̂1 :=
β̂γ̂

2β̂ − γ̂
. (1.3)

To establish the consistency and asymptotic normality of γ̂1, we will make use the tail empirical process
technics given in [9], which is used recently by [4] in the truncation case. The tail empirical process
corresponding to df F, by

D(1)
n (x) := M (1)

n (x)− r1 (x) , for x ≥ 1,

where

M (1)
n (x) :=

∫∞
xXn−k:n

dFn (w)∫∞
Xn−k:n

dFn (w)
=

n

k
Fn (Xn−k:nx) and r1 (x) := x−1/γ ,

so that
γ̂ − γ =

∫ ∞
1

x−1D(1)
n (x) dx.

Likewise, we define the tail empirical process corresponding to df H, by

D(2)
n (x) := M (2)

n (x)− r2 (x) , 2, for x ≥ 1,

where

M (2)
n (x) :=

Hn (xXn−k:n)

Hn (Xn−k:n)
=

∫∞
xXn−k:n

Gn (w) dFn (w)∫∞
Xn−k:n

Gn (w) dFn (w)
and r2 (x) := x−1/β,

so that
β̂ − β =

∫ ∞
1

x−1D(2)
n (x) dx.

By using formula (1.3) , we get

γ̂1 − γ1 =

∫ ∞
1

x−1
(
cn1D

(1)
n (x)− cn2D

(2)
n (x)

)
dx, (1.4)

where

cn1 :=
2β2

(γ̂ − 2β) (γ − 2β)
and cn2 :=

γ̂2(
γ̂ − 2β̂

)
(γ̂ − 2β)

.

By means of previous functional representations and weak approximations corresponding to D
(1)
n (x)

and D
(2)
n (x) below, we establish both consistency and asymptotic normality of γ̂1.The rest of the paper is

organized as follows. In Section 2, we state our main results, namely consistency and asymptotic normality
of γ̂1. A simulation study is carried out, in Section 3, to illustrate the performance of γ̂1. The proofs are
postponed to Appendix 5 whereas some results that are instrumental to our needs are gathered in the
Appendix 6.
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2 MAIN RESULTS

Next we need to the usual second-order condition that specify the rate of convergence of regular variation
functions. More precisely for a given function φ ∈ RV(−1/α), we assume that

1

Aφ (t)

(
φ (tx)

φ (t)
− x−1/α

)
→ x−1/α

xτ/α − 1

τα
, for x > 0,

where |Aφ| is regularly varying (at infinity) with tail index (second-order parameter) τ/α < 0 [?, see, e.g.,
]]deHS96. A function φ satisfying this condition is denoted φ ∈ 2RV(−1/α) (Aφ, τ) . For convenience, we
set Aφ := Aφ ◦ UF , where UL :=

(
1/L

)← with

L← (u) := inf {v : L (v) ≥ u} , for 0 < u < 1,

denoting the (left-continuous) the quantile function pertaining to a (right-continuous) df L. Since F ∈
RV(−1/γ) and G ∈ RV(−1/γ2), then we may assume

F ∈ 2RV(−1/γ) (AF , ρF ) and G ∈ 2RV(−1/γ2) (AG, ρG) . (2.1)

Since H ∈ RV(−1/β), thus we may also suppose that

H ∈ 2RV(−1/β) (AH , ρH) . (2.2)

Theorem 2.1. Assume that condition (2.1) holds. Let k = kn be an integer sequence satisfying k → ∞ and k/n →
0. In addition, if condition (2.2) is fulfilled, then, there exists a sequence of Wiener processes {Wn (x) , x ≥ 0}n≥1 ,
such that for every small 0 < ν < 1, we have

sup
x≥1

xν
∣∣∣D(i)

n (x)
∣∣∣ P→ 0, i = 1, 2. (2.3)

Moreover
sup
x≥1

xν
∣∣∣√kD(i)

n (x)− L(i)
n (x)−

√
kB(i)

n (x)
∣∣∣ P→ 0, i = 1, 2, (2.4)

provided that
√
kAF (n/k) ,

√
kAG (n/k) and

√
kAH (n/k) are asymptotically bounded, where

L(1)
n (x) := Wn

(
x−1/γ

)
− x−1/γWn (1)

and
(β/γ)L(2)

n (x) := x−1/β
{
x1/γWn

(
x−1/γ

)
−Wn (1)

}
+(1− γ/β)

∫ x−1/γ

0

sγ/β−2Wn (s) ds

− (1− γ/β)x−1/β
∫ 1

0

sγ/β−2Wn (s) ds,

with

B(1)
n (x) := x−1/γ

xρF /γ − 1

ρFγ
AF (n/k) and B(2)

n (x) := x−1/β
xρH/β − 1

ρHβ
AH (n/k) .

Thereby, in view of the representation (1.4) and by using respectively the two results of Theorem 2.1 we
end up with the consistency and asymptotic normality of γ̂1, given in the following theorem.

Theorem 2.2. Assume that (2.1) holds. Let k = kn be an integer sequence satisfying k → ∞ and k/n → 0, then

γ̂1
P→ γ1, as N → ∞.

In addition, if (2.2) is fulfilled, then
√
k (γ̂1 − γ1) = Zn1 + Zn2 + µ+ oP (1) ,
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where
(γ − 2β)2

2β2
Zn1 := γ

∫ 1

0

s−1Wn (s) ds− γWn (1)

and

−(γ − 2β)2

γ2
Zn2 := (2γ − β)

γ

β

∫ 1

0

sγ/β−2Wn (s) ds− γWn (1)

+

(
γ

β
− 1

)
γ2

β

∫ 1

0

sγ/β−2Wn (s) (log s) ds,

provided that
√
kAG (n/k) = O (1) ,

√
kAF (n/k) → λF and

√
kAH (n/k) → λH , where

µ :=
2β2 (γ − 2β)−2 λF

1− ρF
− γ2 (γ − 2β)−2 λH

1− ρH
. (2.5)

This implies that √
k (γ̂1 − γ1) → N

(
µ, σ2

)
, as N → ∞,

where

σ2
2 :=

γ6β
(
β2 − 2βγ + 2γ2

)
(2γ − β)3 (γ − 2β)4

.

Remark 2.3. The complete data case corresponds to the situation when β ≡ γ, in which case we have
γ ≡ γ1. It follows that

√
k (γ̂1 − γ1)

D→ N
(
λ/ (1− ρF ) , γ

2
1

)
, as N → ∞, which meets the asymptotic

normality of the classical Hill estimator [10], see for instance, Theorem 3.2.5 in [9].

Remark 2.4. In terms of the tail indices γ1 and γ2, we have

σ2
2 = γ32

(γ1/γ2)
2 (2 (γ1/γ2) + 1)4

(
5 (γ1/γ2)

2 + 4γ1/γ2 + 1
)

(γ1/γ2 + 1) (3 (γ1/γ2) + 1)3
.

Remark 2.5. We show that the ratio between the asymptotic variances σ2
1 and σ2

2 equals

σ2
1

σ2
2

=

(
1− x3

)
(2x+ 1)4

(
5x2 + 4x+ 1

)
(1 + x2) (3x+ 1)3

, where x := γ1/γ2,

and {
1 < σ2

1/σ
2
2 < 3. 2, for 0 < γ1/γ2 < 0.94125

0 < σ2
1/σ

2
2 < 1, for 0.94125 < γ1/γ2 < 1.

The curve of ratio σ2
1/σ

2
2 in the interval (0, 1) , given in Figure ??, illustrates the previous inequalities.

We conclude that γ̂1 is asymptotically more efficient than γ̂
(BMN)
1 for 0 < γ1/γ2 < 0.94125, otherwise

γ̂
(BMN)
1 is asymptotically more efficient than γ̂1. It is worth mentioning that the comparison is made for

0 < γ1/γ2 < 1, because the asymptotic normality of γ̂(BMN)
1 is established only for 0 < γ1 < γ2.

3 SIMULATION STUDY

In this section, we check the finite sample behavior of γ̂1 compared with γ̂
(BMN)
1 and γ̂

(GS)
1 in terms of

absolute bias and rmse. To this end, let us consider sets of truncated and truncation data drawn from Burr
(γ, δ) and Fréchet (γ) models with respective df’s

F (x) =
(
1 + x1/δ

)−δ/γ
, x ≥ 0, δ > 0, γ > 0;

and
F (x) = 1− exp

(
−x−1/γ

)
, x ≥ 0, γ > 0.

Let consider the following scenarios that correspond to df’s F ∗ and G∗:
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0.0 0.2 0.4 0.6 0.8 1.0

0
.0

1
.0

2
.0

3
.0

x

f(
x
)

3.2x

x
0.94125

Fig. 2.1. Plotting of the ratio f (x) := σ2
1/σ

2
2 as function of x := γ1/γ2 on the interval (0, 1) .

γ1 = 0.6, δ = 1/4
p

30% (90%) 40% (60%)
γ2

[S1] 0.257 (5.4) 0.093 (3.843) [S2]
[S3] 0.167 (4.701) 0.420 (5.272) [S4]

TABLE 1. Choices of the tail indices and corresponding percentages of observed sample for each scenario.

• [S1] Burr (γ1, δ) truncated by Burr(γ2, δ)
• [S2] Fréchet (γ1) truncated by Fréchet (γ2)
• [S3] Fréchet(γ1) truncated by Burr(γ2, δ)
• [S4] Burr(γ1, δ) truncated by Fréchet(γ2)

First, we fix the values 0.6 for γ1 and 1/4 for δ, then choose different values for γ2 so that the percentage of
observed data p given in (1.2), be around of 40% and 60% for both scenarios [S2] and [S4] while we choose
30% and 90% for both scenarios [S1] and [S3]. The choice of parameters provides couples of (γ1, γ2) of
different order, that is γ1 < γ2 and γ1 > γ2, which may be obtained by numerically solve, in γ2, Equation
(1.2). The results are recapitulated in the following table:
Thereby, for each scenario, we choose two triplets of parameters (γ1, γ2, p) as follows:

• S1 : (γ1, γ2, p) = (0.6, 0.257, 30%) ; (0.6, 4.701.4, 90%)
• S2 : (γ1, γ2, p) = (0.6, 0.093, 40%) ; (0.6, 3.843, 60%)
• S3 : (γ1, γ2, p) = (0.6, 0.167, 30%) ; (0.6, 4.701, 90%)
• S4 : (γ1, γ2, p) = (0.6, 0.420, 40%) ; (0.6, 5.272, 60%)

We vary the common size N = 300, 500, 1000, 1500 of both samples (X1, ...,XN ) and (Y1, ...,YN ) , then
for each size, we generate 1000 independent replicates. For the selection of the optimal numbers of upper
order statistics used in the computation of the three aforementioned estimators, we apply the algorithm of
[15] page 137. Our illustrations and comparison are made with respect to the absolute biases (abias) and
rmse’s, which are summarized in the four Tables 2-3-4-5 and the eight Figures 3.2-3.3-3.4-3.5-3.6-3.7-3.8-3.9.
In the light of all tables and Figures , the overall conclusion is that γ̂1 behaves well both in terms of bias
and rmse and having a finite sample behavior almost close to γ̂

(BMN)
1 . Moreover, both the two estimators

perform better than γ̂
(GS)
1 in particular in small sample case and for small percentage of observed data p,

on the other termes the later becomes unstable for small sample sizes. On the other hand, as noted in two
Remarks 2.4 and 2.5, that γ̂1 is asymptotically more efficient than γ̂

(BMN)
1 for ”almost” all positive couples

(γ1, γ2) , which also makes our new estimator more advantageous regarding to the two other ones.
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p = 0.3

γ̂1 γ̂
(BMN)
1 γ̂

(GS)
1

N n abias rmse abias rmse abias rmse
300 90 0.398 0.448 0.403 0.442 0.445 4.911
500 149 0.236 0.469 0.226 0.320 0.418 3.989

1000 300 0.187 0.459 0.171 0.276 0.460 2.731
1500 450 0.144 0.362 0.144 0.276 0.342 1.830

p = 0.9
300 270 0.007 0.138 0.004 0.138 0.042 0.346
500 449 0.001 0.110 0.002 0.110 0.016 0.172

1000 899 0.008 0.076 0.005 0.076 0.021 0.117
1500 1350 0.004 0.065 0.002 0.065 0.019 0.098

TABLE 2. Absolute biases and rmse’s for the tail index estimators correspond to scenario S1 based on 1000
right-truncated samples.

p = 0.4

γ̂1 γ̂
(BMN)
1 γ̂

(GS)
1

N n abias rmse abias rmse abias rmse
300 125 0.340 0.577 0.319 0.361 0.606 5.983
500 208 0.345 0.565 0.273 0.327 0.607 5.896

1000 416 0.264 0.509 0.243 0.298 0.428 1.326
1500 626 0.212 0.423 0.218 0.279 0.440 1.760

p = 0.6
300 182 0.008 0.163 0.012 0.164 0.054 7.398
500 304 0.010 0.127 0.014 0.127 0.001 0.208

1000 608 0.008 0.091 0.010 0.091 0.004 0.145
1500 912 0.009 0.076 0.011 0.077 0.004 0.124

TABLE 3. Absolute biases and rmse’s for the tail index estimators correspond to scenario S2, based on
1000 right-truncated samples.

4 CONCLUDING NOTES

By using the well-known probability weighted moment estimation method, we derived a new estimator
of the tail index for right truncated heavy-tailed data and established its consistency and asymptotic
normality without additional assumptions on the underlying df’s. Moreover, the proposed method may
also serve to estimate the second order parameter ρF which is of practical relevance in extreme value

p = 0.3

γ̂1 γ̂
(BMN)
1 γ̂

(GS)
1

N n abias rmse abias rmse abias rmse
300 99 0.371 0.490 0.357 0.411 0.681 4.827
500 165 0.226 0.574 0.233 0.310 0.599 1.803

1000 331 0.181 0.465 0.165 0.278 0.357 2.912
1500 498 0.179 0.401 0.153 0.267 0.422 1.829

p = 0.9
300 273 0.023 0.147 0.027 0.147 0.513 11.574
500 456 0.011 0.110 0.014 0.110 0.024 0.158

1000 911 0.008 0.078 0.010 0.078 0.011 0.118
1500 1367 0.010 0.067 0.012 0.067 0.005 0.098

TABLE 4. Absolute biases and rmse’s for the tail index estimators correspond to scenario S3 , based on
1000 right-truncated samples.



INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND SIMULATION, VOL. 01, NO. 02, 22–46 30

p = 0.4

γ̂1 γ̂
(BMN)
1 γ̂

(GS)
1

N n abias rmse abias rmse abias rmse
300 121 0.177 0.494 0.170 0.317 0.975 11.564
500 201 0.080 0.594 0.112 0.297 0.288 3.733

1000 403 0.059 0.327 0.093 0.247 0.189 1.231
1500 604 0.047 0.256 0.062 0.246 0.164 3.483

p = 0.6
300 180 0.011 0.158 0.007 0.156 0.057 5.154
500 300 0.008 0.126 0.005 0.125 0.170 4.699

1000 601 0.006 0.091 0.002 0.091 0.011 0.150
1500 902 0.006 0.076 0.003 0.076 0.002 0.116

TABLE 5. Absolute biases and rmse’s for the tail index estimators correspond to scenario S4 , based on
1000 right-truncated samples.
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Fig. 3.2. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S1 : ( γ1 = 0.6, γ2 = 5.4 and p = 90%) based on 1000 samples of size 500
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Fig. 3.3. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S1 : ( γ1 = 0.6, γ2 = 0.257 and p = 30%) based on 1000 samples of size 500
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Fig. 3.4. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S2 : ( γ1 = 0.6, γ2 = 3.843 and p = 60%) based on 1000 samples of size 500
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Fig. 3.5. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S2 : ( γ1 = 0.6, γ2 = 0.093 and p = 40%) based on 1000 samples of size 500

analysis due its crucial importance in selecting the optimal number of upper order statistics k in tail
index estimation (see, e.g., [9]) and to reduce the bias of such estimation. The asymptotic behavior of the
obtained reduced bias estimator may be also established by means of the two tail empirical processes
D

(i)
n (x) , i = 1, 2. This problem will be addressed in our future work.
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Fig. 3.6. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S3 : ( γ1 = 0.6, γ2 = 4.701 and p = 90%) based on 1000 samples of size 500
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Fig. 3.7. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S3 : ( γ1 = 0.6, γ2 = 0.167 and p = 30%) based on 1000 samples of size 500
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Fig. 3.8. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S4 : ( γ1 = 0.6, γ2 = 5.272 and p = 60%) based on 1000 samples of size 500
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Fig. 3.9. Absolute bias (left panel) and RMSE (right panel) of γ̂1 (blue) and γ̂
(BMN)
1 (red) and γ̂

(GS)
1 (black),

corresponding to scenario S4 : ( γ1 = 0.6, γ2 = 0.420 and p = 40%) based on 1000 samples of size 500
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5 APPENDIX A
It is worth mentioning that, since n/N → p a.s. as N → ∞, then for a random sequence ZN

P→ Z as
N → ∞, we have Zn

P→ Z as N → ∞, too. The proof of this matter is similar as that is used in Lemma 3.7
in [3]. In other words, the results regarding to convergence in probability of a sequence of rv’s indexed
by N can also be used by indexing by n.

5.1 Proof of Theorem 2.1
We will only show the results of the Theorem for i = 2, since those of case i = 1 become trivial when
replacing β by γ. To start, first recall that D(2)

n (x) = M
(2)
n (x)− x−1/β, x ≥ 1, where

M (2)
n (x) =

Hn (xXn−k:n)

Hn (Xn−k:n)
,

and

Hn (x) =

∫∞
x Gn (w) dFn (w)∫∞
0 Gn (w) dFn (w)

.

Observe that M (2)
n (x) = ∆

(2)
n (x) /∆

(2)
n (1) , where

∆(2)
n (x) :=

n

k

∫∞
xXn−k:n

Gn (w) dFn (w)

Gn (Xn−k:n)
.
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Thus, we may write

D(2)
n (x) =

∆
(2)
n (x)− (β/γ)x−1/β

∆
(2)
n (1)

− x−1/β
∆

(2)
n (1)− β/γ

∆
(2)
n (1)

. (5.1)

Let ak := UF (n/k) and decompose ∆
(2)
n (x)− (β/γ)x−1/β into the sum of

Tn1 (x) :=
n

k

(
1

Gn (Xn−k:n)
− 1

G (Xn−k:n)

)∫ ∞
xXn−k:n

Gn (w) dFn (w) ,

Tn2 (x) :=
n/k

G (Xn−k:n)

∫ ∞
xXn−k:n

(
Gn (w)−G (w)

)
dFn (w) ,

Tn3 (x) :=
n

k

(
1

G (Xn−k:n)
− 1

G (ak)

)∫ ∞
xXn−k:n

G (w) dFn (w) ,

Tn4 (x) :=
n/k

G (ak)

∫ xak

xXn−k:n

G (w) dFn (w) ,

Tn5 (x) :=
n/k

G (ak)

∫ ∞
xak

G (w) d (Fn (w)− F (w))

and
Tn6 (x) :=

n/k

G (ak)

∫ ∞
xak

G (w) dF (w)− (β/γ)x−1/β.

Making use of (5.1) , we way write

∆(2)
n (1)D(2)

n (x) =

5∑
i=1

(
Tni (x)− x−1/βTni (1)

)
+ B̃(2)

n (x) , (5.2)

where
B̃(2)
n (x) := Tn6 (x)− x−1/βTn6 (1)

=
n/k

G (ak)

∫ ∞
xak

G (w) dF (w)− x−1/β
n/k

G (ak)

∫ ∞
ak

G (w) dF (w) .

Next, we show that for every sufficiently small 0 < η, ϵ < 1/2, we have
√
kTni(x) = oP (ϱ (x)) , for i = 1, 2, (5.3)

√
k (Tn3(x) + Tn4(x) + Tn5(x)) = L(2)

n (x) + oP (ϱ (x)) (5.4)

and

B̃(2)
n (x) = x−1/β

(
xρH/β − 1

ρHγ
+ o (xϵ)

)
AH (n/k) , (5.5)

uniformly over x ≥ 1, where ϱ (x) = x−η/β+ϵ and L(2) (x) is the Gaussian process given in Theorem 2.1.
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5.1.1 Preliminaries
Note that F ∗ and G∗ are continuous, then it is easy to verify that both df’s F and G are as well, therefore
the two rv’s U := F (X) and V := G (Y ) are uniformly distributed on (0, 1) . Let

Un (s) := n−1
n∑

i=1

I{Ui≤s} and Vn (s) := n−1
n∑

i=1

I{Vi≤s},

denote the uniform empirical df’s pertaining to the samples

Ui := F (Xi) and Vi := G (Yi) , i = 1, ..., n,

respectively. We have F (x) = F (x+) , then

I
(
Ui ≤ F (x)

)
= I

(
F (Xi) ≤ F (x+)

)
and since F is decreasing then this latter equals

I (Xi ≥ x+) = 1− I (Xi < x+) = 1− I (Xi ≤ x) .

By using similar arguments, we end up with

I (Yi ≥ y+) = 1− I (Yi < y+) = 1− I (Yi ≤ y) .

Hence for x, y ≥ 0, we may write

Fn (y) = Un

(
F (x)

)
and Gn (y) = Vn

(
G (y)

)
. (5.6)

Next, we will use a useful weak approximation, due to [6], corresponding to the uniform tail empirical
processes, saying that: in the probability space (Ω,A,P) , there exists a sequence of standard Wiener
precesses {Wn (x) , x ≥ 0} , such that, for every 0 < η < 1/2 and M > 0, we have

sup
0<s≤M

s−η
∣∣∣∣√k

(
n

k
Un

(
k

n
s

)
− s

)
−Wn (s)

∣∣∣∣ = oP (1) . (5.7)

On the other hand, we have sup0<s≤M s−η |Wn (s)| = OP (1) [?, see, e.g., example 1.8 in ]]Alex86, which
implies that

sup
0<s≤M

s−η
∣∣∣∣√k

(
n

k
Un

(
k

n
s

)
− s

)∣∣∣∣ = OP (1) . (5.8)

The previous result remains valid when replacing Un by Vn, that is

sup
0<s≤M

s−η
∣∣∣∣√k

(
n

k
Vn

(
k

n
s

)
− s

)∣∣∣∣ = OP (1) . (5.9)

5.1.2 Asymptotic behavior of Tn1

Note that F (ak) = k/n, and let us write

√
kTn1 = −

√
k
(
Gn (Xn−k:n)−G (Xn−k:n)

)
Gn (Xn−k:n)

×
∫ ∞
x

Gn (wXn−k:n)

G (Xn−k:n)
d
Fn (wXn−k:n)

F (ak)
.

Observe that, by letting s =
n

k
G (Xn−k:n) , we have

√
k
(
Gn (Xn−k:n)−G (Xn−k:n)

)
=

k

n

√
k

(
n

k
Vn

(
k

n
s

)
− s

)
,

which, by using the result (5.9) , equals

OP (1) (k/n) sη = OP (1) (k/n)1−η
(
G (Xn−k:n)

)η
,
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for some fixed 0 < η < 1/2. It is worth mentioning that, since Xi < Yi, for i = 1, ..., n, then Xn:n < Yn:n,
which implies that V1:n = G (Yn:n) < G (Xn−k:n) < 1, therefore

G (Xn−k:n)

Gn (Xn−k:n)
=

G (Xn−k:n)

Vn

(
G (Xn−k:n)

) < sup
V1:n≤s<1

s

Vn (s)
,

which, from Proposition 6.2, is equal to OP (1) . On the other hand, Gn (w) = 0, for w ≥ Yn:n, it follows
that

√
kTn1 = OP (1)

(
k/n

G (Xn−k:n)

)1−η ∫ Yn:n/Xn−k:n

x

Gn (wXn−k:n)

G (Xn−k:n)
d
Fn (wXn−k:n)

F (ak)
.

Observe now, that for any w ≥ 1, we have

Gn (wXn−k:n)

G (Xn−k:n)
=

Vn

(
G (wXn−k:n)

)
G (wXn−k:n)

,

and, since G (wXn−k:n) ≤ G (Xn−k:n) , then in view of Proposition 6.2 the latter ratio is less than or equal
to supV1:n≤s<1 Vn (s) /s = OP (1) , hence

√
kTn1 = OP (1)

(
k/n

G (Xn−k:n)

)1−η ∫ ∞
x

G (wXn−k:n)

G (Xn−k:n)
d
Fn (wXn−k:n)

F (ak)
.

Next, we require to the following Potter-type inequalities [?, see, e.g., Proposition B.1.10, page 369 in]]deHF06
corresponding to regular variation functions.

Proposition 5.1. Let g ∈ RV(α) with α ∈ R. Then, for any sufficiently small ϵ > 0, there exists t0 = t0 (ϵ) > 0,
such that |g (ts) /g (t)− s−α| ≤ ϵs−αmax (s−ϵ, sϵ) , for any t ≥ t0 and s > 0.

For the sake of simplicity, we set xν±ϵ := xν max (x−ϵ, xϵ) and ±ϵc = ±ϵ for ϵ ↓ 0 and any real constants
ν and c. Note that Xn−k:n/ak

P→ 1, then by using the previous proposition, we readily show that
G (Xn−k:n) /G (ak) = OP (1) and

G (wXn−k:n)

G (Xn−k:n)
= OP

(
w−1/γ2+ϵ

)
, as N → ∞,

uniformly on w ≥ 1. Thus

√
kTn1 = OP (1)

(
k/n

G (ak)

)1−η ∫ ∞
x

w−1/γ2+ϵd
Fn (wXn−k:n)

F (ak)
.

Recall that , since Fn (w) = 0, for w ≥ Xn:n and Fn (wXn−k:n) = Un

(
F (wXn−k:n)

)
, then by using an

integration by parts to the latter integral and then Proposition 6.2, yields

√
kTn1 = OP (1)

(
k/n

G (ak)

)1−η

×
{
x−1/γ2+ϵF (xXn−k:n)

F (ak)
+

∫ ∞
x

F (wXn−k:n)

F (ak)
dw−1/γ2+ϵ

}
.

Making use of Proposition 5.1 and after integration, we show that both two quantities between brackets
equal OP

(
x−1/γ1−1/γ+ϵ

)
= OP (ϱ (x)) uniformly on x ≥ 1. On the hand in view of Proposition 6.4, we have

G (ak) = O (1) (k/n)γ/γ2 , then (
k/n

G (ak)

)1−η
= (k/n)(1−η)(1−γ/γ2) .

Recall that 0 < η < 1/2 and 0 < γ/γ2 < 1, then (k/n)(1−η)(1−γ/γ2) = o (1) , it follows that
√
kTn1 = oP (ϱ (x)) ,

uniformly on x ≥ 1.
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5.1.3 Asymptotic behavior of Tn2

It is clear that
√
kTn2 =

1

G (Xn−k:n)

∫ ∞
x

√
k
(
Gn (wXn−k:n)−G (wXn−k:n)

)
d
Fn (wXn−k:n)

F (ak)
.

For convenience, we set bk := UG (n/k) so that G (bk) = k/n. It is easy to verify, from (5.6) , that
n

k

√
k
(
Gn (wXn−k:n)−G (wXn−k:n)

)
=

√
k

(
n

k
Vn

(
k

n
G (wXn−k:n) /G (bk)

)
−G (wXn−k:n) /G (bk)

)
,

which, by using (5.9) , equals OP (1)
(
G (wXn−k:n) /bk

)η
, uniformly on w ≥ 1, therefore

√
kTn2 = OP (1)

k/n

G (Xn−k:n)

∫ ∞
x

(
G (wXn−k:n) /G (bk)

)η
d
Fn (wXn−k:n)

F (ak)
.

By using the routine manipulations of two Propositions 6.2 and 5.1, we get

√
kTn2 = OP (1)

k/n

G (Xn−k:n)

(
Xn−k:n

bk

)−η/γ2±ϵ ∫ ∞
x

w−η/γ2+ϵdw−1/γ+ϵ.

Recall that Xn−k:n = (1 + oP (1)) ak, then by making use of Proposition 6.4, it is easy to verify that

k/n

G (Xn−k:n)

(
Xn−k:n

bk

)−η/γ2±ϵ
= OP (1) (k/n)(1−η)(1−γ/γ2)±ϵ .

Since γ/γ2 < 1 and
∫∞
x w−η/γ2+ϵdw−1/γ+ϵ = OP (ϱ (x)) , then

√
kTn2 = oP (ϱ (x)) , uniformly on x ≥ 1.

5.1.4 Asymptotic behavior of Tn3

Observe now √
kTn3 =

√
k

(
G (ak)

G (Xn−k:n)
− 1

)∫ ∞
xXn−k:n

G (w)

G (ak)
d
Fn (w)

F (ak)
,

and
√
k

(
G (ak)

G (Xn−k:n)
− 1

)

=
√
k

(
G (ak)

G (Xn−k:n)
−
(

ak
Xn−k:n

)−1/γ2)
+
√
k

((
ak

Xn−k:n

)−1/γ2
− 1

)
=: In1 + In2.

Next we show that In1 = oP (1) . Indeed, we have G ∈ 2RV(−1/γ2) (AG, ρG) which implies that for possibly
different functions ÃG, with ÃG (t) ∼ AG (t) , as t → ∞, and for each 0 < ϵ < 1, there exists t0 = t0 (ϵ) ,
such that for all tz ≥ t0 we have∣∣∣∣∣G (tz) /G (t)− z−1/γ2

ÃG (t)
− z−1/γ2

zρG/γ2 − 1

ρGγ2

∣∣∣∣∣ ≤ ϵz−1/γ2±ϵ. (5.10)

[?, see, e.g., Proposition 4 and Remark 1 in]]HJ-2011. We will use this inequality with t = tn = Xn−k:n and
z = zn = ak/Xn−k:n. Since zn = (1 + oP (1)) then z

ρG/γ2
n − 1 = oP (1) , it follows that

G (ak)

G (Xn−k:n)
−
(

ak
Xn−k:n

)−1/γ2
= oP (1) |AG| (Xn−k:n) .
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Since |AG| is regularly varying, then AG (Xn−k:n) = (1 + oP (1))AG (ak) . Recall that by assumption√
kAG (ak) =

√
kAG (n/k) = O (1) , it follows that In1 = oP (1) . The term In2 may be decomposed into

√
k

((
Xn−k:n

ak

)1/γ2

−
(
nUk:n

k

)−γ/γ2)
+
√
k

((
nUk:n

k

)−γ/γ2
− 1

)
.

By using similar arguments as used for In1, we also show that the first of the previous quantity equals
oP (1) . For the second term, we use assertion (i) in Proposition 6.2, to get

√
k

((
nUk:n

k

)−γ/γ2
− 1

)
=

γ

γ2
Wn (1) + oP (1) .

It is now easy to show that ∫ ∞
xXn−k:n

G (w)

G (ak)
d
Fn (w)

F (ak)
=

x−1/γ2−1/γ

γ/γ2 + 1
+ oP (ϱ (x)) ,

therefore √
kTn3 =

γ

γ + γ2
x−1/γ2−1/γWn (1) + oP (ϱ (x)) ,

uniformly on x ≥ 1, which may be rewritten in terms of tail index β = γ1γ/ (2γ1 − γ) , into
√
kTn3 = (1− β/γ)x−1/βWn (1) + oP (ϱ (x)) . (5.11)

5.1.5 Asymptotic behavior of Tn4

Let us write √
kTn4(x) = −

√
k

∫ x

xXn−k:n/ak

G (wak)

G (ak)
d
Fn (wak)

F (ak)
,

which may be decomposed into the sum of

√
kT

(1)
n4 (x) := −

√
k

∫ x

xXn−k:n/ak

(
G (wak)

G (ak)
− w−1/γ2

)
d
Fn (wak)

F (ak)
,

√
kT

(2)
n4 (x) := −

√
k

∫ x

xXn−k:n/ak

w−1/γ2d

(
Fn (wak)− F (wak)

F (ak)

)
,

√
kT

(3)
n4 (x) := −

√
k

∫ x

xXn−k:n/ak

w−1/γ2d

(
F (wak)

F (ak)
− w−1/γ

)
and √

kT
(4)
n4 (x) := −

√
k

∫ x

xXn−k:n/ak

w−1/γ2dw−1/γ .

We will show that
√
kT

(1)
n4 (x) = oP (ϱ (x)) , the proof of the other terms follow by using similar arguments.

For convenience, we set c−k := min (1, Xn−k:n/ak) and c+k := min (1, Xn−k:n/ak) , and apply Proposition 5.1
(to G), we get

√
kT

(1)
n4 (x) = oP (1)

√
k

∫ xc+k

xc−k

w−1/γ2+ϵd
Fn (wak)

F (ak)
.

Since w−1/γ2+ϵ <
(
xc+k

)−1/γ2+ϵ and c+k = 1 + oP (1) , then

√
kT

(1)
n4 (x) = oP

(
x−1/γ2+ϵ

) √
k
∣∣Fn (xXn−k:n)− Fn (xak)

∣∣
F (ak)

.

Observe that the previous ratio is less than or equal to

√
k

∣∣Fn (xXn−k:n)− F (xXn−k:n)
∣∣

F (ak)
+
√
k

∣∣Fn (xak)− Fn (xak)
∣∣

F (ak)
.
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By applying (5.8) twice, we show that both terms equal OP

(
(k/n)1/2−η x−η/γ+ϵ

)
, it follows that

√
kT

(1)
n4 (x) = oP

(
x−1/γ2−η/γ+ϵ

)
= oP (ϱ (x)) .

For the last term we use an elementary integration to write

√
kT

(4)
n4 (x) =

γ2
γ + γ2

x−1/γ2−1/γ
√
k

((
Xn−k:n

ak

)−1/γ2−1/γ
− 1

)
,

then we make use of assertion (ii) in Proposition 6.4, we obtain
√
kT

(4)
n4 (x) = −x−1/βWn (1) + oP (ϱ (x)) =

√
kTn4(x). (5.12)

5.1.6 Asymptotic behavior of Tn5

Recall that
Tn5 (x) :=

n/k

G (ak)

∫ ∞
xak

G (w) d (Fn (w)− F (w))

The change of variables s = G (w) /G (ak) gives w = UG

(
1/
(
sG (ak)

))
and therefore

Tn5 =
n

k

∫ G(xak)/G(ak)

0

sd

(
Fn

(
UG

(
1

sG (ak)

))
− F

(
UG

(
1

sG (ak)

)))
,

which by an integration by parts may be rewritten into the sum of

T
(1)
n5 :=

n

k

G (xak)

G (ak)

(
Fn (xak)− F (xak)

)
and

T
(2)
n5 := −n

k

∫ G(xak)/G(ak)

0

(
Fn

(
UG

(
1

sG (ak)

))
− F

(
UG

(
1

sG (ak)

)))
ds.

Observe that √
kT

(1)
n5 =

G (xak)

G (ak)

√
k

{
n

k
Un

(
k

n

(n
k
F (xak)

))
− n

k
F (xak)

}
,

and use weak approximation (5.7) to get

√
kT

(1)
n5 =

G (xak)

G (ak)

(
Wn

(n
k
F (xak)

)
+ oP (1)

(n
k
F (xak)

)η)
.

By applying Proposition 5.1 twice (for G and F ), we get
√
kT

(1)
n5 = x−1/γ2Wn

(n
k
F (xak)

)
+ oP

(
x−1/γ2−η/γ+ϵ

)
.

For convenience, we set hn (s) :=
n

k
F
(
UG

(
1

sG(ak)

))
to write

√
kT

(2)
n5 = −

∫ G(xak)/G(ak)

0

√
k

(
n

k
Un

(
k

n
hn (s)

)
− hn (s)

)
ds,

which by using weak approximation (5.7) equals

−
∫ G(xak)/G(ak)

0

Wn (hn (s)) ds+ oP (1)

∫ G(xak)/G(ak)

0

(hn (s))
η ds.

Observe that F
(
UG

(
1/G (ak)

))
= k/n, it follows that

hn (s) = F

(
UG

(
1

sG (ak)

))
/F

(
UG

(
1

G (ak)

))
.
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Note that F ◦ UG (1/·) ∈ RV(γ2/γ) near zero, then by the routine application of Proposition 5.1, we end up
with ∫ G(xak)/G(ak)

0

(hn (s))
η ds = O

(
x−η(1/γ2+1/γ)+ϵ

)
.

Hence, we showed that

√
kTn5 = x−1/γ2Wn

(n
k
F (xak)

)
−
∫ G(xak)/G(ak)

0

Wn (hn (s)) ds+ oP

(
x−η(1/γ2+1/γ)+ϵ

)
.

Observe now that, by using the mean value theorem, we get∫ G(xak)/G(ak)

x−1/γ2

Wn (hn (s)) ds =

(
G (xak)

G (ak)
− x−1/γ2

)
Wn (hn (gn (x))) ,

where gn (x) is between G (xak) /G (ak) and x−1/γ2 . It is easy to check that

hn (gn (x)) < (1 + ϵxϵ)x−1/γ , for any x ≥ 1,

it follows that
sup
x≥1

∣∣∣(hn (gn (x)))1/2Wn (hn (gn (x)))
∣∣∣ ≤ sup

0≤u≤1+ϵ
|Wn (u)| ,

which is stochastically bounded, therefore∫ G(xak)/G(ak)

x−1/γ2

Wn (hn (s)) ds = OP (1) (hn (gn (x)))
−1/2

∣∣∣∣G (xak)

G (ak)
− x−1/γ2

∣∣∣∣ ,
uniformly on x ≥ 1. By using the routine manipulations of Proposition 5.1, we show that

G (xak) /G (ak)− x−1/γ2 = o
(
x−1/γ2+ϵ

)
and (hn (gn (x)))

−1/2 = O
(
x−1/(2γ)+ϵ

)
,

thereby ∫ G(xak)/G(ak)

x−1/γ2

Wn (hn (s)) ds = oP

(
x−1/γ2−1/(2γ)+ϵ

)
= oP (ϱ (x)) ,

because 0 < η < 1/2. Next we show that

Wn

(n
k
F (xak)

)
= Wn

(
x−1/γ

)
+ oP (ϱ (x)) ,

uniformly on w ≥ 1. Let us fix d > 0 and set ϱn (x) :=
∣∣∣n
k
F (xak)− x−1/γ

∣∣∣ to write

P

(
sup
w≥1

x1/(2γ)−ϵ
∣∣∣Wn

(n
k
F (xak)

)
−Wn

(
x−1/γ

)∣∣∣ > d

)
= P

(
sup
w≥1

x1/(2γ)−ϵ |Wn (ϱn (x))| > d

)
= P

(
|Wn (1)| sup

w≥1
x1/(2γ)−ϵ (ϱn (x))

1/2 > d

)
,

which, by Markov’s inequality, is less than or equal to d−2 supw≥1 x
1/(2γ)−ϵ (ϱn (x))

1/2 . Since ϱn (x) =

o
(
x−1/γ+ϵ

)
, uniformly on w ≥ 1, then the latter probability equals o (1) as sought. Hence, we showed that∫ x−1/γ2

0

Wn (hn (s)) ds =

∫ x−1/γ2

0

Wn

(
sγ2/γ

)
ds+ oP (ϱ (x)) ,

thus
√
kTn5 = x−1/γ2Wn

(
x−1/γ

)
−
∫ x−1/γ2

0

Wn

(
sγ2/γ

)
ds+ oP (ϱ (x)) .

By using a change of variables, the latter equation becomes

√
kTn5 = x1/γ−1/βWn

(
x−1/γ

)
+ (1− γ/β)

∫ x−1/γ

0

tγ/β−2Wn (t) dt+ oP (ϱ (x)) . (5.13)

It follows that, from (5.11) , (5.12) and (5.13) , that (5.6) is indeed true.
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5.1.7 Asymptotic behavior of B̃(2)
n (x)

It is easy to verify that

B̃(2)
n (x) =

(
H (xak)

H (ak)
− x−1/β

)(∫ ∞
ak

G (w)

G (ak)
d
F (w)

F (ak)

)
.

By using inequality (5.10) (applied to H), that for possibly different functions ÃH , with ÃH (t) ∼ AH (t) ,
as t → ∞, and for each 0 < ϵ < 1, there exists t0 = t0 (ϵ) , such that for all t ≥ t0 and x ≥ 1, we have∣∣∣∣∣H (tx) /H (t)− x−1/β

ÃH (t)
− x−1/β

xρH/β − 1

ρHβ

∣∣∣∣∣ ≤ ϵx−1/β+ϵ.

Thus by letting t = ak, we write

H (xak)

H (ak)
− x−1/β = x−1/β

(
xρH/β − 1

ρHβ
+ o (xϵ)

)
ÃH (ak) .

uniformly on x ≥ 1. Since ÃH (ak) ∼ AH (n/k) then

H (xak)

H (ak)
− x−1/β = x−1/β

(
xρH/β − 1

ρHβ
+ o (xϵ)

)√
kAH (n/k) .

On the other hand, we have ∫ ∞
ak

G (w)

G (ak)
d
F (w)

F (ak)
→ β

γ
,

it follows that B̃(2)
n (x) = x−1/β

(
xρH/β − 1

ρHγ
+ o (xϵ)

)
AH (n/k) , uniformly on x ≥ 1.

5.1.8 Summarize
Up to now we showed that

√
k
(
∆(2)

n (x)− (β/γ)x−1/β
)
= Θn (x) +

√
kB̃(2)

n (x) + oP (ϱ (x)) ,

where

Θn (x) := x1/γ−1/βWn

(
x−1/γ

)
− β

γ
x−1/βWn (1) +

(
1− γ

β

)∫ x−1/γ

0

tγ/β−2Wn (t) dt,

uniformly on x ≥ 1. Recall that ϱ (x) = x−η/β and note that Θn (x) = OP (ϱ (x)) and B̃(2)
n (x) = oP (ϱ (x)) ,

because AH (n/k) = o (1) , it follows that

∆(2)
n (x)− (β/γ)x−1/β = oP (ϱ (x)) .

Let 0 < ν < η < 1/2 be sufficiently small, then

xν/β
(
∆(2)

n (x)− (β/γ)x−1/β
)
= oP

(
x(ν−η)/β+ϵ

)
uniformly on x ≥ 1. It follows that

sup
x≥1

xν/β
∣∣∣∆(2)

n (x)− (β/γ)x−1/β
∣∣∣ P→ 0

and ∆
(2)
n (1)

P→ β/γ, thus by (5.1) we get supx≥1 xν/β
∣∣∣D(2)

n (x)
∣∣∣ P→ 0, as well, which gives (2.3) (for i = 2).

Observe now that √
k
(
∆(2)

n (1)− (β/γ)
)
= Θn (1) + oP (1) ,

it follows form (5.1) , that
√
k∆(2)

n (1)D(2)
n (x) = Θn (x)− x−1/βΘn (1) +

√
kB̃(2)

n (x) + oP (ϱ (x)) .

It is ready to check that Θn (x) − x−1/βΘn (1) ≡ L(2)
n (x) , thus the weak approximation (2.4) (for i = 2)

comes. This completes the proof of the theorem.
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5.2 Proof of Theorem 2.2
Recall that

γ̂ − γ =

∫ ∞
1

x−1D(1)
n (x) dx and β̂ − β =

∫ ∞
1

x−1D(2)
n (x) dx.

By applying respectively the two first results in Theorem 2.1, we easily show that γ̂ P→ γ and β̂
P→ β, that

we omits further details. To establish the asymptotic normality, let us first write

γ̂1 − γ1 =
2β2

(γ̂ − 2β) (γ − 2β)
(γ̂ − γ)− γ̂2(

γ̂ − 2β̂
)
(γ̂ − 2β)

(
β̂ − β

)
. (5.14)

By making use of, respectively, two Gaussian approximations in Theorem 2.1 yields
√
k (γ̂ − γ) =

∫ ∞
1

x−1L(1)
n (x) dx+

∫ ∞
1

x−1
√
kB(1)

n (x) dx+ oP (1)

and √
k
(
β̂ − β

)
=

∫ ∞
1

x−1L(2)
n (x) dx+

∫ ∞
1

x−1
√
kB(2)

n (x) dx+ oP (1) .

By using an integration by parts with a change of variables, we end up with

√
k (γ̂ − γ) = γ

∫ 1

0

s−1Wn (s) ds− γWn (1) +

√
kAF (n/k)

1− ρF
+ oP (1) ,

and
√
k
(
β̂ − β

)
= (2γ − β)

γ

β

∫ 1

0

sγ/β−2Wn (s) ds− γWn (1)

+

(
γ

β
− 1

)
γ2

β

∫ 1

0

sγ/β−2Wn (s) (log s) ds+

√
kAH (n/k)

1− ρH
+ oP (1) .

The previous two representations mean that
√
k (γ̂ − γ) and

√
k
(
β̂ − β

)
are asymptotically Gaussian rv’s,

which imply that √
k (γ̂ − γ) = OP (1) =

√
k
(
β̂ − β

)
.

Then in view of (5.14) together with the consistency of γ̂ and β̂, we get

√
k (γ̂1 − γ1) =

2β2

(γ − 2β)2

√
k (γ̂ − γ)− γ2

(γ − 2β)2

√
k
(
β̂ − β

)
+ oP (1) .

By assumptions, we have
√
kAF (n/k) → λF and

√
kAH (n/k) → λH , it follows that

√
k (γ̂1 − γ1) = Zn1 + Zn2 + µ+ oP (1) ,

where
(γ − 2β)2

2β2
Zn1 := γ

∫ 1

0

s−1Wn (s) ds− γWn (1)

and

−(γ − 2β)2

γ2
Zn2 : = (2γ − β)

γ

β

∫ 1

0

sγ/β−2Wn (s) ds− γWn (1)

+

(
γ

β
− 1

)
γ2

β

∫ 1

0

sγ/β−2Wn (s) (log s) ds,

with µ is as in (2.5) . Note that both Zn1 and Zn2 are centred Gaussian rv’s, then it remains to compute the
second order moment of Zn1 + Zn2. To this end, let us define the following quantities

∆1 (ρ) :=

∫ 1

0

sρ−2Wn (s) ds, ∆2 (ρ) :=

∫ 1

0

sρ−2Wn (s) (log s) ds, ∆3 := Wn (1) .
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Thereby, we write
(γ − 2β)2

2β2
Zn1 := γ∆1 (1)− γ∆3

and

−(γ − 2β)2

γ2
Zn2 := (2γ − β)

γ

β
∆1 (γ/β)− γ∆3 +

(
γ

β
− 1

)
γ2

β
∆2 (γ/β) .

By using elementary computations, we end up with the following expectations:

E
[
∆2

1 (ρ)
]
=

2

ρ (2ρ− 1)
, E

[
∆2

2 (ρ)
]
=

2 (4ρ− 1)

ρ2 (2ρ− 1)3
, E

[
∆2

3

]
= 1,

E [∆1 (ρ)∆2 (ρ)] =
1− 4ρ

ρ2 (2ρ− 1)2
, E [∆1 (ρ)∆3] =

1

ρ
, E [∆2 (ρ)∆3] = − 1

ρ2
.

This gives

E [Zn1]
2 =

4β4γ2

(γ − 2β)4
, E [Zn2]

2 =
βγ6

(
β2 − 2βγ + 2γ2

)
(2γ − β)3 (γ − 2β)4

and
E [Zn1Zn2] = − 2β4γ2

(γ − 2β)4
,

therefore

E [γ̂1 − γ1]
2 = E [Zn1]

2 +E [Zn2]
2 + 2E [Zn1Zn2] + o (1)

=
γ6β

(
β2 − 2βγ + 2γ2

)
(2γ − β)3 (γ − 2β)4

+ o (1) ,

which completes the proof of the lemma.

6 APPENDIX B
Proposition 6.1. Assume that F ∈ RV(−1/γ1) and G ∈ RV(−1/γ2). Then, for every r, s ≥ 0, we have

E
[(
G (X)

)r
(log(X/t))s | X > t

]
E
[(
G (X)

)r | X > t
] →

(
γ1γ

(1 + r) γ1 − rγ

)s

Γ (s+ 1) , as t → ∞.

Proof. Observe that
E
[(
G (X)

)r
(log(X/t))s | X > t

]
E
[(
G (X)

)r | X > t
] =

It (s)
It (0)

,

where

It (s) :=
∫ ∞
t

(
G (x)

G (t)

)r

(log(x/t))s
dF (x)

F (t)
.

Let us decompose It (s) into the sum of

It,1 := −
∫ ∞
1

{(
G (tx)

G (t)

)r

− x−r/γ2
}
(log x)s d

F (tx)

F (t)
,

It,2 := −
∫ ∞
1

x−r/γ2 (log x)s d

{
F (tx)

F (t)
− x−1/γ

}
and It,3 := −

∫∞
1 x−r/γ2 (log x)s dx−1/γ . Next we show that both It,1 and It,2 tend to zero as t → ∞. Indeed,

let us write

|It,1| ≤
∫ ∞
1

∣∣∣∣(G (tx)

G (t)

)r

− x−r/γ2
∣∣∣∣ (log x)s dF (tx)

F (t)
.
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Since G ∈ RV(−1/γ2) then G ∈ RV(−r/γ2) therefore by applying Proposition 5.1 yields(
G (tx)

G (t)

)r

− x−r/γ2 = o
(
x−r/γ2+ϵ

)
= o (1) , as t → ∞,

for every small ϵ > 0 and uniformly on x ≥ 1. It follows that

It,1 = o (1)

∫ ∞
1

(log x)s d
F (tx)

F (t)
.

By using an integration by parts, we show that∫ ∞
1

(log x)s d
F (tx)

F (t)
=

∫ ∞
1

F (tx)

F (t)
d (log x)s .

Once again, from Proposition 5.1, F (tx) /F (t) = (1 + o (xϵ))x−1/γ , then the previous integral becomes∫ ∞
1

(1 + o (xϵ))x−1/γd (log x)s .

It is clear that ∫ ∞
1

x−1/γd (log x)s = s

∫ ∞
1

(log x)s−1 x−1/γ−1dx

= γss

∫ ∞
0

vs−1e−vdv = γssΓ (s) ,

which, from the gamma function properties, is finite for any s ≥ 0. This implies that∫ ∞
1

(1 + o (xϵ))x−1/γd (log x)s < ∞,

for any s ≥ 0 and small ϵ > 0, and therefore It,1 = o (1) . For the term It,2 we use once gain an integration
by parts with similar arguments to get It,2 = o (1) as well. By using elementary analysis with a change of
variables, we show that

It,3 =
Γ (s+ 1)

γ (r/γ2 + 1/γ)s+1 ,

thereby
It (s)
It (0)

=
Γ (s+ 1)

(r/γ2 + 1/γ)s
+ o (1) , as t → ∞.

Finally, by replacing 1/γ2 by 1/γ − 1/γ1, we complete the proof of Proposition 6.1.

Proposition 6.2. Let Rn (s) := n−1
∑n

i=1 I (ξi ≤ s) , be the uniform empirical df pertaining to a sequence of iid
rv’s ξi, i = 1, ..., n uniformly distributed on (0, 1) . Then, for n ≥ 1, we have

sup
ξ1:n≤t≤1

t

Rn (t)
= OP (1) = sup

ξ1:n≤t≤1

Rn (t)

t
,

where ξ1:n := min1≤i≤n (ξi) .

Proof. The proofs of the first two assertions may be found in [17] (pages 415 and 416, inequality 2).

Proposition 6.3. Let k = kn be an integer sequence satisfying k → ∞ and k/n → 0, then

(i)
√
k

(
1−

(
nUk:n

k

)α)
= Wn (1) + oP (1) .

If the second-order condition (2.1) (for F ) holds, then

(ii)
√
k

((
Xn−k:n

ak

)α

− 1

)
= αγWn (1) + oP (1) ,
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and

(iii)
√
k

(
1− F (xXn−k:n)

F (xak)

)
= Wn (1) + oP (1) ,

uniformly on x ≥ 1, for every real α.

Proof. Let us start by to prove assertion (i) for α = 1. Observe that
√
k (1− nUk:n/k) =

√
k
(n
k
Un (nUk:n/k)− nUk:n/k

)
,

and from weak approximation (5.7) , there exists a sequence of standard Wiener processes Wn (s) , such
that √

k
(n
k
Un (nUk:n/k)− nUk:n/k

)
= Wn (nUk:n/k) + oP (1) .

Next we show that Wn (nUk:n/k) = Wn (1) + oP (1) . To this end, let us

ϵn := |nUk:n/k − 1|

which tends to zero in probability. It is clear that for any fixed d > 0, we have

P (|Wn (nUk:n/k)−Wn (1)| > d)

= P (|Wn (ϵn)| > d) ≤ P

(
sup

0≤s≤ϵn
|Wn (s)| > d

)
.

For sufficiently small ϵ > 0, the latter probability is less than or equal to

P

(∣∣∣∣ sup
0≤s≤ϵ

|Wn (s)|
∣∣∣∣ > d

)
+ ϵ ≤ P

(
|Wn (1)| > ϵ−1/2d

)
+ ϵ,

which by using Markov’s inequality is
(
d−2 + 1

)
ϵ. This means that Wn (nUk:n/k) = Wn (1) + oP (1) . To

show assertion (i) for every real α, it suffices to use the mean value theorem and the fact that nUk:n/k =
1 + oP (1) . For assertions (ii) and(iii) , let us write

√
k

(
1− F (xXn−k:n)

F (xak)

)
=

√
k

(
nUk:n

k
− F (xXn−k:n)

F (xak)

)
+

√
k

(
1− nUk:n

k

)
and

√
k

((
Xn−k:n

ak

)α

− 1

)
=

√
k

((
Xn−k:n

ak

)α

−
(
nUk:n

k

)−αγ)
+
√
k

((
nUk:n

k

)−αγ
− 1

)
.

By using similar arguments with the second order condition of F , we show that both first terms of right-
hand of the previous equations tend to zero in probability. To achieve the proof it suffices to apply assertion
(i) , as sought.

Proposition 6.4. Assume F ∈ 2RV(−1/γ) (AF , ρF ) and G ∈ 2RV(−1/γ2) (AG, ρG). Then, for all large x, there
exist constants c1, c2 > 0, such that

F (x) = (1 + o (1)) c1x
−1/γ and G (x) = (1 + o (1)) c2x

−1/γ2 .

Proof. See the proof of Lemma 7.1 in [3].
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